Inner-Shell Photodetachment of Negative Ions ### <u>Outline</u> General Introduction • Simultaneous Double Auger Decay, He- Threshold Phenomena Production of Highly Charged Ions, 5⁻ Photodissociation of small clusters ### Why Study Negative lons - •Offer New Perspective for Understanding Strongly Correlated System. - Theoretical and Experimental Challenge. Gaseous Pillars • M16 PRC95-44a • ST Scl OPO • November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA ### How different are the Photodetachment of Negative Ions and Photoionization of Neutral Atoms/ Positive Ions??? Photoionization of He Photodetachment of He- WHY? Coulomb interaction is effectively screened in negative ions ⇒ Different dynamic, structure and properties.... **Experimental** Size Selected Production **Apparatus of the** Beam merger amline @ (electrostatic) Steering, focussing Focussing, BPM's & interaction region Negative Ion Sources I⁺ detector m/q selector - SNICS-II (magnetic) - Alphatross Ream demerger (m. enetic) Beamline 10.0.0 - SGM I detector Size and Charge Selected Detection high resolution (>10,000) high flux (>10¹² ph/s) Photon beam Ion beam X ALS High brightness undulator source **Absolute cross sections of ions** Absolute cross sections of ions available from careful measurements of overlaps, photon & ion fluxes and ### K-Shell Photodetachment of He-1s2s2p 4P- $$hv + He^-$$ → $He + e^-$ → $He^* + e^-$ → $He^+ + e^-_A + e^-$ **Probing Doubly and Triply Excited States!!** **Hollow Ion/Atom** ### K-Shell Photodetachment of He: :Comparison Between Two Calculations in Dispute + PCI Effect Berrah, Bozek, Turri, Ackerman, Rude, Zhou, Manson, PRL 88, 093001 (2002). #### Search for the 2s2p² ⁴P State of He⁻??? hv + He⁻ (2s2p^{2 4}P) →?? He⁺ (1s 2 S) +e⁻+ e⁻ Probe Feshbach Resonance via ## Simultaneous 3e: Decay Process!!? ### Feshbach Resonance: Observation of the 2s2p² ⁴P State of He⁻ First Evidence of Simultaneous 3 e-Decay process in Core-Excited Negative Ions Strong Double Auger Decay!! 11% Bilodeau, Bozek, Turri, Ackerman and Berrah PRL, 93, 193001 (2004) ### Threshold Law: TheWigner Law $$\sigma = \sigma_0 \varepsilon_e^{1+1/2}$$ $\sigma_0 = \text{amplitude}$ $\varepsilon_e = h\nu - \varepsilon_t$; photoelectron energy ε_t = threshold energy $I = I_0 \pm 1$; I_0 angular momentum of the bound electron being detached s-detachment, $I_0 = 0$, $I_0 = 1 \Rightarrow p$ outgoing wave (He⁻) p-detachment, $I_0 = 1$, $I_0 = 1 \pm 1$, s, d outgoing wave (S⁻) ### Test Validity of Wigner Law in Inner-Shell Photodetachment of Negative Ions??? Why doesn't PCI affect the validity of the Wigner law?? #### K-shell Photodetachment Threshold of 1s2s3p 4P in He -.-.Vicario, no PCI ...Vicario, PCI _ p-Wave Wigner Law Fit Bilodeau, Bozek, Gibson, Walter, Ackerman, Dumitriu, and Berrah, Phys. Rev. Lett. 95, 083001 (2005). What Type of Phenomena or Processes Occur in the case of Inner-Shell Photodetachment of Heavier Targets?? ### High Charge State Formation Following 2p Photodetachment of S ### 2p Photodetachment Threshold for S⁺, S²⁺ and S³⁺ s-Wave Wigner Law Valid for All Channels #### **2p Threshold Photodetachment in S**- Threshold investigation in S 2+ ...s&d-wave Wigner law fit — s-wave Wigner law fit 3 eV range of validity Compared to 0.01-0.1 eV for valence e #### **2p Threshold Photodetachment in S-.** ### Threshold investigation in S⁺ and S³⁺ Bilodeau, Bozek, Ackerman, Gibson, Walter, Aguilar, Turri, Dumitriu and Berrah PRA rapid Comm (in press) #### 2s Photodetachment Threshold for S^+ , S^{2+} and S^{3+} ### 2s_3p Feshbach resonance, below 2s threshold in all three Channels!? Fano profile + p-wave Wigner law ### 1s Ionization of size selected B_n- B- 1s²2s²2p² ³P Competition: Photodetachment & Photodissociation in B₂- and B₃- Sum of meas. channels B⁺ product B₂⁺ product ### Summary - Negative Ions are Strongly Correlated Systems and have Dramatic Relaxation Mechanisms; They present Serious Challenges to Theorists. - Wigner Law is Valid at Threshold Despite PCI Effects as well as for Charge States - Shape and Feshbach Resonances have been Observed in Light and Heavy Systems. - Highly Charged Ions may be Produced via Shake-Off, Knock-out, Simultaneous ### Inner-Shell (n=2) Phototodetachment: High Charge State Formation; Si- **2p Photodetachment Allows Charge State Formation** Si⁴⁺ Simultaenous Multi-Auger Decay??? ### Shape Resonance Observed Only in the S⁺ Channel ### K-Shell Photodetachment of Li $$hv + Li^{-} \rightarrow Li + e^{-}$$ $$\rightarrow Li^{*} + e^{-}$$ $$\rightarrow Li^{+} + e^{-}_{A} + e^{-}$$ ### Probing Shape Resonance Schematic energy level diagram. All excitations of Li⁻ have a propensity for decay into neutral Li and Li⁺. Only the notable decays are shown. #### Recapture of the Photoelectron: Dramatic Post-Collision Recapture # Recapture of the Photoelectron: Dramatic Post-Collision Recapture (PCI) Schematic energy level diagram. All excitations of Li have a propensity for decay into neutral Li and Li+. Only the notable decays are shown. #### **New Results: Absolute Cross section Measurements** #### Li Double-Photodetachment Spectrum ⁴T.W. Gorczyca, O. Zatsarinny, H.-L. Zhou, S.T. Manson, Z. Felfli, and A.Z. Msezane, Phys. Rev. A 68, 050703 (2003) #### Competition: Photodetachment and Photodissociation in B₂- ### High Resolution Spectra for B₂ Photodetachment & Photodissociation Reactions Si-, Si₂-, Si₃- Sum of channels Si⁺ product Si₂⁺ product Si₃⁺ product #### New Future AMO Scientific Directions: ### Complexity and Control - 1. Inner-Shell Studies of Metal Clusters (size dependent) - 2. Two-Color Inner-Shell Experiments on Atoms, Molecules, Clusters and Ions (synch + ultrafast/high field lasers) - 3. Study Atoms, Molecules, Ions and Clusters with the LCLS ### Highlights of New Future Research #### 1. Inner-Shell Studies of Cluster Anions: - The Carbon Anion Chain..... C_{60}^{-} - Transition Metals - -Semi-conductor Ga_mX_n (X=P, As; n,m=1-3) - -Metal hydride such as MH⁻, MH₂⁻, MH₃- and MH₄-(M= Sc_ Cu). - Development/Use of Photoelectron Spectrocopy on Ions Studies. #### **New Future Studies of Clusters** #### • Electronic Properties of Clusters: - _ Angle-resolved, inner-valence and inner-shell photoelectron spectroscopic studies of van der Waals clusters. - _ Studies of Metal clusters, Va, Ti, Fe and their oxides, as a function of cluster size. #### • Magnetic Properties of Clusters: _ Spin-resolved measurements; application to the magnetic recording industry. TABLE I: Measured ratio of channel strengths $[\sigma(S^{n+})/\sigma(S^{m+}) \times 100\%]$, reported to 1 SD. | Photon Energy | Ratio of Channel Strengths [in %] | | | | | |---------------|-----------------------------------|---------------------------------|-----------------|--|--| | [eV] | S^{2+}/S^{+} | S ³⁺ /S ⁺ | S^{3+}/S^{2+} | | | | 169.911 | 21.81(160) | 1.819(139) | 8.22(61) | | | | 199.866 | 58.0(41) | 8.67(57) | 14.95(98) | | | | 229.820 | 67.0(49) | 16.28(104) | 25.18(166) | | | TABLE II: Measured absolute cross sections, reported to 1 SD. | Photon Energy | Cross Section [Mb] | | | | |---------------|--------------------|-----------|----------------------------|------------------| | [eV] | s^+ | S^{2+} | $\mathbf{S}^{\mathbb{S}+}$ | S^{4+} | | 170.147 | 3.30(39) | 0.696(85) | $0.0585(67)^a$ | | | 200.172 | 4.18(55) | 2.38(31) | $0.357(45)^a$ | | | 230.197 | 3.83(60) | 2.31(34) | $0.587(84)^a$ | $\sim 0.023^{b}$ | $[^]a{\rm The~S^{3+}}$ cross sections are obtained from the combination of S+ and S^2+ cross sections and the channel ratios of Table I. $[^]b$ The S⁴⁺ signal was found to be about 100 times weaker (within a factor of \sim 3) than S²⁺ for energies between 230 to 240 eV. #### Shape Resonance Observed in the S⁺ Channel